深入解读:业务数据分析十大常用技巧与方法
尊敬的用户,以下是基于您提供的用户行为数据,运用SQL语言进行产品转化漏斗分析的示例代码:
1. 分析各环节的用户留存数量与比率:
```sql
-- 用户点击下单按钮后的留存数量与比率
SELECT COUNT(DISTINCT device_id) AS retention_count,
COUNT(DISTINCT device_id) * 100.0 / (SELECT COUNT(DISTINCT device_id) FROM dwd_user_behavior WHERE action_id = 'click_order_button') AS retention_rate
FROM dwd_user_behavior
WHERE action_id = 'click_order_button';
-- 用户打开提交订单页后的留存数量与比率
SELECT COUNT(DISTINCT device_id) AS retention_count,
COUNT(DISTINCT device_id) * 100.0 / (SELECT COUNT(DISTINCT device_id) FROM dwd_user_behavior WHERE action_id = 'open_submit_order_page') AS retention_rate
FROM dwd_user_behavior
WHERE action_id = 'open_submit_order_page';
-- 用户点击提交订单按钮后的留存数量与比率
SELECT COUNT(DISTINCT device_id) AS retention_count,
COUNT(DISTINCT device_id) * 100.0 / (SELECT COUNT(DISTINCT device_id) FROM dwd_user_behavior WHERE action_id = 'click_submit_order_button') AS retention_rate
FROM dwd_user_behavior
WHERE action_id = 'click_submit_order_button';
-- 用户打开支付页后的留存数量与比率
SELECT COUNT(DISTINCT device_id) AS retention_count,
COUNT(DISTINCT device_id) * 100.0 / (SELECT COUNT(DISTINCT device_id) FROM dwd_user_behavior WHERE action_id = 'open_payment_page') AS retention_rate
FROM dwd_user_behavior
WHERE action_id = 'open_payment_page';
-- 用户点击确认支付后的留存数量与比率
SELECT COUNT(DISTINCT device_id) AS retention_count,
COUNT(DISTINCT device_id) * 100.0 / (SELECT COUNT(DISTINCT device_id) FROM dwd_user_behavior WHERE action_id = 'click_confirm_payment') AS retention_rate
FROM dwd_user_behavior
WHERE action_id = 'click_confirm_payment';
-- 用户跳转至支付成功页后的留存数量与比率
SELECT COUNT(DISTINCT device_id) AS retention_count,
COUNT(DISTINCT device_id) * 100.0 / (SELECT COUNT(DISTINCT device_id) FROM dwd_user_behavior WHERE action_id = 'open_payment_success_page') AS retention_rate
FROM dwd_user_behavior
WHERE action_id = 'open_payment_success_page';
```
2. 计算各环节之间的平均停留时长:
```sql
-- 从点击下单按钮到打开提交订单页的平均停留时长
SELECT AVG(DATEDIFF(day, LAG(action_time) OVER (ORDER BY action_time), action_time)) AS average_stay_time
FROM dwd_user_behavior
WHERE action_id IN ('click_order_button', 'open_submit_order_page');
-- 从打开提交订单页到点击提交订单按钮的平均停留时长
SELECT AVG(DATEDIFF(day, LAG(action_time) OVER (ORDER BY action_time), action_time)) AS average_stay_time
FROM dwd_user_behavior
WHERE action_id IN ('open_submit_order_page', 'click_submit_order_button');
-- 从点击提交订单按钮到打开支付页的平均停留时长
SELECT AVG(DATEDIFF(day, LAG(action_time) OVER (ORDER BY action_time), action_time)) AS average_stay_time
FROM dwd_user_behavior
WHERE action_id IN ('click_submit_order_button', 'open_payment_page');
-- 从打开支付页到点击确认支付的平均停留时长
SELECT AVG(DATEDIFF(day, LAG(action_time) OVER (ORDER BY action_time), action_time)) AS average_stay_time
FROM dwd_user_behavior
WHERE action_id IN ('open_payment_page', 'click_confirm_payment');
-- 从点击确认支付到跳转至支付成功页的平均停留时长
SELECT AVG(DATEDIFF(day, LAG(action_time) OVER (ORDER BY action_time), action_time)) AS average_stay_time
FROM dwd_user_behavior
WHERE action_id IN ('click_confirm_payment', 'open_payment_success_page');
```
请根据实际业务需求和数据结构对以上代码进行适当调整,并确保将`dwd_user_behavior`替换为实际的表名。
郑重声明:以上内容与本站立场无关。本站发布此内容的目的在于传播更多信息,本站对其观点、判断保持中立,不保证该内容(包括但不限于文字、数据及图表)全部或者部分内容的准确性、真实性、完整性、有效性、及时性、原创性等。相关内容不对各位读者构成任何投资建议,据此操作,风险自担。股市有风险,投资需谨慎。如对该内容存在异议,或发现违法及不良信息,请发送邮件至,我们将安排核实处理。